Справочники по математике

Скачать бесплатно справочники по математике

  • Справочник по математике (в формулах, таблицах, рисунках) учебное пособие И.В. Бабичева, Т.Е. Болдовская. – 2-е изд., исп. и доп. – Омск СибАДИ, 2010 Скачать Этот справочник включает общие понятия, определения, формулы элементарной и высшей математики, знание которых необходимо как при ознакомлении с курсом высшей математики, так и при изучении общепрофессиональных и специальных дисциплин. Материал учебника иллюстрирован большим количеством рисунков, таблиц и схем. Предназначен для студентов инженерных специальностей
  • Справочник по элементарной математике. М. Я. Выгодский — 2006 Скачать  Справочник включает весь материал, входящий в программу основного курса математики высших учебных заведений. Содержит основные разделы элементарной математики — арифметику, алгебру, геометрию, тригонометрию, функции и графики, а также математические таблицы.  Все определения, правила, формулы и теоремы сопровождаются разными примерами и пояснениями. Предметный указатель и подробное содержание позволяют легко и быстро получить необходимую информацию. Книга адресована учащимся и учителям, общеобразовательных учреждений, колледжей и лицеев.
  • Бронштейн И.Н., Семендяев Справочник по математике для инженеров и учащихся втузов,  1986. Файл формата pdf; размером 48,4 МБ. скачать оригинал скачать сжатый файл до 16,8 МБ Скачать бесплатно справочник

Разделы математики

Раздел 1. АЛГЕБРА

Действия с дробями. Пропорции. Квадратное уравнение. Разложение квадратного трехчлена на множители. Формулы сокращенного умножения.  Действия со степенями  и  корнями.  Логарифмы. Прогрессии. Проценты. Средние величины.

Раздел 2. ТРИГОНОМЕТРИЯ

Сравнительная таблица градусной и радианной мер углов. Тригонометрические функции и их знаки. Значения тригонометрических функций некоторых углов. Тригонометрические тождества. Формулы приведения.

Раздел 3.  ПЛАНИМЕТРИЯ И СТЕРЕОМЕТРИЯ

Площади фигур. Площади поверхностей и объемы тел.

Раздел 4. ЛИНЕЙНАЯ АЛГЕБРА

Определители. Виды матриц. Действия над матрицами. Системы линейных алгебраических уравнений (СЛАУ). Обратная матрица и ее нахождение. Собственные векторы, собственные значения матрицы и их нахождение.

Раздел 5. ВЕКТОРНАЯ АЛГЕБРА

Векторы и координаты. Линейные операции над векторами. Нелинейные операции над векторами.

Раздел 6. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ НА ПЛОСКОСТИ

Системы координат. Метод координат. Уравнения прямой  на плоскости. Взаимное расположение прямых. Кривые второго порядка. Замечательные кривые.

Раздел 7. АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ В ПРОСТРАНСТВЕ

Системы координат в пространстве. Уравнения плоскости. Частные случаи положения плоскости в пространстве. Взаимное расположение плоскостей. Уравнения прямой в пространстве.  Взаимное расположение прямых в пространстве. Взаимное расположение прямой и плоскости. Поверхности второго порядка.

Раздел 8. ВВЕДЕНИЕ В МАТЕМАТИЧЕСКИЙ АНАЛИЗ

Числовые множества. Функция, способы ее задания и свойства. Графики основных элементарных функций. Правила построения графиков функций сдвигами и деформациями графиков известных функций. Предел функции. Правила вычисления пределов. Непрерывность функции.

Раздел 9.ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИИ ОДНОЙ ДЕЙСТВИТЕЛЬНОЙ ПЕРЕМЕННОЙ

Понятие производной. Основные правила дифференцирования. Таблица производных. Дифференцирование различных функций. Дифференциал функции. Правило Лопиталя. Исследование функций и построение графиков.

Раздел 10. ДИФФЕРЕНЦИАЛЬНАЯ ГЕОМЕТРИЯ

Векторная функция скалярного аргумента. Числовые характеристики кривой.

Раздел 11. ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ

Частные производные функции и их нахождение. Дифференцирование различных функций. Дифференциал и его приложения. Исследование функции двух переменных на экстремум.

Раздел 12. КОМПЛЕКСНЫЕ ЧИСЛА

Понятие комплексного числа. Формы записи и операции над комплексными числами. Основная теорема алгебры. Иллюстративные примеры.

Раздел 13. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ ОДНОЙ ПЕРЕМЕННОЙ

Неопределенный интеграл и его свойства. Таблица простейших интегралов. Методы интегрирования. Интегрирование различных функций. Определенный интеграл, его свойства и вычисление. Несобственные интегралы. Геометрические приложения определенного интеграла. Примеры задач на геометрические приложения определенного интеграла.

Раздел 14. ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ МНОГИХ ПЕРЕМЕННЫХ

Интегралы от скалярной функции. Физические приложения двойных и тройных интегралов. Вычисление двойного интеграла. Вычисление тройного интеграла. Физические приложения интегралов I рода. Вычисление криволинейного интеграла I рода. Вычисление поверхностного интеграла I рода. Криволинейные и поверхностные интегралы II рода (по координатам). Теоремы о связи между интегралами. Вычисление криволинейного интеграла II рода. Вычисление поверхностного интеграла II рода.

Раздел 15.  ЭЛЕМЕНТЫ ТЕОРИИ ПОЛЯ

Скалярное поле. Векторное поле. Классификация векторных полей.

Раздел 16. ОБЫКНОВЕННЫЕ ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ (ДУ)

Основные понятия. Интегрирование ДУ первого порядка. Интегрирование ДУ, допускающих понижение порядка. Теоремы о структуре общего решения линейных дифференциальных уравнений второго порядка. Интегрирование однородных линейных ДУ второго порядка с постоянными коэффициентами. Интегрирование линейных неоднородных ДУ второго порядка с постоянными коэффициентами и правой частью специального вида.

Раздел 17. ЧИСЛЕННЫЕ МЕТОДЫ

Получение функции на основании экспериментальных данных по методу наименьших квадратов.  Приближенные методы решения уравнений вида  f (x) = 0. Решение обыкновенных дифференциальных уравнений.

Раздел 18. РЯДЫ

Числовые ряды. Основные понятия. Признаки сходимости. Степенные ряды. Основные понятия. Разложение элементарных функций в ряд Маклорена. Ряды Фурье.

Раздел 19. УРАВНЕНИЯ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

Волновое уравнение. Уравнение теплопроводности. Уравнение Лапласа. Задача Дирихле для круга.

Раздел 20. ДИСКРЕТНАЯ МАТЕМАТИКА

Множества. Свойства и операции над ними. Бинарные отношения. Правила и формулы комбинаторики. Основные понятия теории графов. Виды графов. Типы графов. Операции над графами. Способы задания графов.

Раздел 21. ЭЛЕМЕНТЫ МАТЕМАТИЧЕСКОЙ ЛОГИКИ

Операции над высказываниями. Булевы функции. Основные законы математической логики. Формы представления булевых функций.

Раздел 22. ТЕОРИЯ ВЕРОЯТНОСТЕЙ

Случайные события и действия над ними. Вероятность события. Теоремы сложения и умножения вероятностей. Последовательность независимых испытаний. Формы закона распределения случайной величины. Числовые характеристики случайной величины. Основные законы распределения вероятностей. Закон больших чисел.

Раздел 23. МАТЕМАТИЧЕСКАЯ СТАТИСТИКА

Выборки. Статистические оценки параметров распределения. Проверка статистических гипотез о законе распределения генеральной совокупности.